The flat mapper functions transforms stream one message to zero or many messages 1 to zero OR 1 to many
.
JqFlatMapper
The JqFlatMapper is a special mapper that allows us to use Jq Syntax, internally the mapper uses eiiches/jackson-jq library to build the jq query.
{
"name":"jqFlatMapper",
"className":"io.wizzie.normalizer.funcs.impl.JqFlatMapper",
"properties": {
"jqQuery": "{ids:[.ids|split(\",\")[]|tonumber|.+100],name}"
}
}
You only need to set he property jqQuery
where you must define a new JSON. The above function transform this input message into this output message.
Input:
{"ids": "12,15,23", "name": "jackson", "timestamp": 1418785331123}
Output:
{"ids": [112, 115, 123], "name": "jackson"}
SplitterFlatMapper
The SplitterFlatMapper is a flatMapper that process a single message and produce one or more messages. This flatMapper split a message into multiples messages based on the difference of time.
{
"name":"mySplitterFlatMapper",
"className":"io.wizzie.normalizer.funcs.impl.SplitterFlatMapper",
"properties": {
"dimensions": ["bytes", "pkts"],
"timestampDim": "timestamp",
"firstTimestampDim": "first_switch"
}
}
On this flatMapper you have three properties:
dimensions
: The dimension that the mapper should split.timestampDim
: The dimension that indicate the current time.first_switch
: The dimension that indicate the previous time.
This mapper process a message and divide the bytes
and pkts
counters across multiple output messages based on the minutes difference between timestamp
and first_switch
.
Input:
{"timestamp": 1477379967, "first_switch": 1477379847, "bytes": 120, "pkts": 60}
Output:
{"timestamp": 1477379847, "bytes": 60, "pkts": 30}
{"timestamp": 1477379967, "bytes": 60, "pkts": 30}
ArrayFlattenMapper
This flatMapper allows us to do a flatten array using all the other message fields.
{
"name":"myArrayFlatMapper",
"className":"io.wizzie.normalizer.funcs.impl.ArrayFlattenMapper",
"properties": {
"flatDimension": "my_array_dim"
}
}
On this flatMapper, you only need to specify the property flatDimension
, this dimension must be an Json Array.
Input:
{"timestamp": 1477379967, "my_array_dim": [{"my_first": 1, "my_second": 2}, {"other_first": 1, "other_second": 2}], "outside_field":"outside_value"}
Output:
{"timestamp": 1477379967, "outside_field":"outside_value", "my_first": 1, "my_second": 2}
{"timestamp": 1477379967, "outside_field":"outside_value", "other_first": 1, "other_second": 2}
FormatterFlatMapper
The formatterFlatMapper allows us to generate one or more message from a unique message. It allows us to select the different dimensions to build the new output messages.
On this flatMapper you have three properties:
commonFields
: The dimension that the mapper must select on the input message and put on all output messages.filters
: This mapper allows us to apply filter to create multiple stream branches into the function.generators
: The generators apply on each input message transforming it on a new output message. Currently, there are two generators:- constant: The
constant
generator is used to add constant value to the output message. - fieldValue: The
fieldValue
generator select a specific field form the input message and put it on the output message.
- constant: The
passIfNotApply
: This property enable/disable if the flatmapper allows to send the messages, that don’t apply on any filter, to the next function. Default value:false
{
"inputs": {
"topic1": [
"stream1"
]
},
"streams": {
"stream1": {
"funcs": [
{
"name": "myFormatterFlatMapper",
"className": "io.wizzie.normalizer.funcs.impl.FormatterFlatMapper",
"properties": {
"commonFields": ["timestamp", "user_id"],
"filters": [
{"name": "inside", "className": "io.wizzie.normalizer.funcs.impl.FieldFilter", "properties": {"dimension": "location", "value": "inside"}},
{"name": "outside", "className": "io.wizzie.normalizer.funcs.impl.FieldFilter", "properties": {"dimension": "location", "value": "outside"}}
],
"generators": [
{
"filter": "outside",
"definitions": [
{
"apply": [
{"field": "location", "content": {"type": "constant", "value": "garden"}},
{"field": "light", "content": {"type": "fieldValue", "value": "dev_1"}}
]
},
{
"apply": [
{"field": "location", "content": {"type": "constant", "value": "swimming pool"}},
{"field": "cleaner_engine", "content": {"type": "fieldValue", "value": "dev_2"}}
]
}
]
},
{
"filter": "inside",
"definitions": [
{
"apply": [
{"field": "location", "content": {"type": "constant", "value": "kitchen"}},
{"field": "light", "content": {"type": "fieldValue", "value": "light_1"}}
]
},
{
"apply": [
{"field": "location", "content": {"type": "constant", "value": "bedroom"}},
{"field": "light", "content": {"type": "fieldValue", "value": "light_2"}}
]
}
]
}
]
}
}
],
"sinks": [
{
"topic": "output"
}
]
}
}
}
Input:
{"timestamp": 1477379967, "user_id": "MY_USER_ID", "location": "outside", "dev_1": "ON", "dev_2": "OFF"}
{"timestamp": 1477379967, "user_id": "MY_USER_ID", "location": "inside", "light_1": "ON", "light_2": "ON"}
Output:
{"timestamp": 1477379967, "user_id": "MY_USER_ID", "location": "garden", "light":"ON"}
{"timestamp": 1477379967, "user_id": "MY_USER_ID", "location": "swimming pool", "cleaner_engine":"OFF"}
{"timestamp": 1477379967, "user_id": "MY_USER_ID", "location": "kitchen", "light":"ON"}
{"timestamp": 1477379967, "user_id": "MY_USER_ID", "location": "bedroom", "light":"OFF"}